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Abstract 

This paper presents a method for the reliable extrac- 
tion of structure-factor amplitude information from 
the least-squares integrated-intensity refinement of 
powder diffraction data. The inevitable overlap of 
Bragg reflections can lead to strongly correlated 
reflection intensities that can, in turn, produce 
unrealistic negative intensity estimates. A Bayesian 
method is presented that tackles the problem of 
highly correlated positive and negative intensities. 
The results indicate that accurate structure-factor 
amplitudes may be recovered even in regions of a 
powder diffraction pattern where overlap is almost 
complete. 

1. Introduction 

Structure determination from powder diffraction 
data alone is a substantial crystallographic challenge. 
Powder diffraction data are, in general, of poorer 
statistical quality than single-crystal data. More sig- 
nificantly, however, the collapse of three dimensions 
of diffraction data on to the one dimension of a 
powder diffraction pattern leads to inevitable peak 
overlap. Much attention has been given to the prob- 
lems of overlapping integrated intensities (David, 
1987, 1990; Jansen, Peschar & Schenk, 1992; Ester- 
mann, McCusker & Baerlocher, 1992; Bricogne, 
1991; Gilmore, Henderson & Bricogne, 1991). It is, 
however, clear that a poor evaluation of the 
integrated intensities in a powder diffraction pattern 
will always lead to poor results no matter how good 
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the algorithms used in the analysis of overlapped 
reflections. In this paper, attention is focused on the 
reliable extraction of structure-factor amplitudes. It 
is assumed that the unit cell has already been derived 
using, for example, auto-indexing techniques and 
that, therefore, the Bragg-peak positions can be 
accurately determined. The approach is based upon 
the Pawley (1981) method and involves the least- 
squares fitting of the diffraction pattern to separate 
integrated intensities. The parameters that are 
usually varied in such a procedure include back- 
ground parameters, cell parameters (determining 
peak positions), peak-width parameters (determining 
peak shape) and the integrated intensities (which are 
directly proportional to peak area). The procedure 
works extremely well if peak overlap is either non- 
existent or exact (in the case, for example, of 511 and 
333 cubic Bragg reflections). When substantial over- 
lap occurs, intensity values can become highly corre- 
lated. Although the summed area of a group of 
Bragg peaks will be well determined, the individual 
intensities can vary wildly between negative and 
positive values that are substantially larger in magni- 
tude than the overall 'clump' intensity itself. This is 
clearly wrong and has been taken to represent a 
fundamental weakness of the least-squares method. 
Pawley (1981) was aware of the problem and ingeni- 
ously introduced into the least-squares analysis addi- 
tional slack constraint terms that had the tendency to 
force individual intensities to be close to the mean 
value of a 'clump' of intensities. In practice, this 
approach does not completely obviate the problem 
of highly varying intensity values. An elegant tech- 
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nique proposed by Le Bail, Duroy & Fourquet 
(1988) has been found to surmount the problems of 
wild intensity variations and has as a result become 
the preferred method of integrated-intensity extrac- 
tion from powder diffraction data. A major benefit 
of this approach is its computational efficiency, in 
that no large least-squares matrix need be inverted. 
The method also gives inherently positive intensities 
if the background is correctly estimated. This 
appears at first sight to give significant advantages 
over other methods. It does, however, suffer from a 
number of limitations that include difficulties in 
evaluating the estimated standard deviations of and 
statistical correlations between intensity values. This 
paper sets out to provide a rigorous statistical for- 
mulation of the extraction of structure-factor ampli- 
tudes from overlapped reflections in a powder 
diffraction pattern. The approach is based upon the 
least-squares approach and thus is based upon the 
work of Pawley (1981) rather than that of Le Bail et 
al. (1988). The main departure from the work of 
Pawley is the method of dealing with highly corre- 
lated overlapping reflections. Rather than employing 
an empirical restraint algorithm, this paper shows 
that there is a perfectly natural probabilistic method 
of including the requirement of positive intensities 
within a Bayesian context. 

An algorithm is developed by considering firstly, 
in § 2, the assumptions of a conventional approach 
to the question: 'Given that A 2 is measured to be I = 
I0--- ~r~, what is the expected value of A?' The con- 
ventional answer is well defined as long as o"i << Io 
but breaks down when I0 << ~ri and in particular 
when Io is negative. The Bayesian approach is 
developed for a single peak from a consideration of 
the shortcomings and assumptions of a conventional 
analysis (9 3). § 4 deals with the complication of 
overlapping reflections while § 5 considers further 
aspects of prior knowledge about the distribution of 
peak intensities. In § 6, the algorithm is applied to a 
section of a neutron powder diffraction pattern of 
benzene obtained from the high-resolution powder 
diffractometer HRPD at ISIS. 

2. A conventional analysis 

Experimentally measured diffraction data are related 
linearly to the intensity of a Bragg peak, which, in 
turn, depends on the square of the structure-factor 
amplitude. The linear relationship means that Bragg- 
peak intensities can be estimated from diffraction 
data in a straightforward manner. A simple pro- 
cedure often used in the estimation of 'observed' 
peak intensities in the Rietveld method involves 
adding up the measured counts in the region of a 
Bragg peak and subtracting from it the average of 
the background in its neighbourhood. When applied 

in an iterative manner, this is essentially the tech- 
nique developed by Le Bail et al. (1988). A more 
statistically rigorous estimate of the intensity, how- 
ever, can be obtained by adopting a procedure that 
involves the fitting of a suitable profile and back- 
ground function to the Bragg peak. The first detailed 
Bayesian fitting procedure was developed by Oatley 
& French (1982). 

Whether an adding or fitting procedure is used, the 
result (having been corrected for multiplicity factors) 
tends to be stated as 

I =  Io +- O'I, (1) 

where I0 is the best estimate of the intensity I and O" I 

is a measure of its uncertainty. In powder diffraction 
data, the values of the background and the intensity 
of the Bragg peaks are usually found to have very 
little correlation between them; even if their estimates 
were strongly linked, any doubt about the magnitude 
of the background would be reflected in a corre- 
sponding larger value of the error bar ~ri. The crystal 
structure is, of course, related to the amplitudes (and 
phases) of the structure factors rather than to their 
intensities. The unnormalized structure-factor ampli- 
tude A is related to this reduced intensity I by 

I = A  2. (2) 

(Throughout this paper, A denotes an un-normalized 
structure-factor amplitude. It is related to the true 
structure-factor amplitude ]F[ by a multiplicative 
term that involves the reflection multiplicity, mj, the 
appropriate Lorentz-polarization correction and a 
scale, the magnitude of which is determined by the 
number of counts in the diffraction pattern.) It thus 
seems reasonable that the best estimate of the ampli- 
tude A0 is given by the square root of the intensity 
Io ~/2. The error in the amplitude ~rA can be estimated 
simply by differentiating (2), squaring both sides and 
taking (the square roots of) the expectation values: 

o'A = ( ( 3 A ) 2 )  ~/2 = [ ( ( 3 I ) 2 ) / ( 4 A 2 ) ]  '/2 = o ' / / ( 2 I o l / 2 ) .  (3) 

Unfortunately, this elementary analysis breaks down 
when Io is negative, as often occurs for weak reflec- 
tions and strongly overlapping reflections. The clue 
to the resolution of this difficulty lies in the examina- 
tion of the assumptions that are implicit in the 
seemingly innocuous analysis presented above. 

3. The Bayesian approach 

Consider (1). The parameters Io and trl are usually 
numbers that are returned by a fitting program. Io 
represents the value of the intensity that the Bragg 
peak would have in order to minimize the discrep- 
ancy between measured and predicted data. It is the 
maximum-likel ihood estimate because it is the value 
of the intensity that maximizes the likelihood function 
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or the conditional probability distribution function 
(p.d.f.), prob ({data}l/). In fact, (1) is shorthand for 
saying that the likelihood function is approximately 
Gaussian with mean Io and standard deviation cri: 

prob ({data}l/) oc exp [ - ( I -  I0)2/2cr2]. (4) 

If the data are themselves subject to independent and 
additive Gaussian noise, then it can easily be shown 
that Io is given by the familiar least-squares pro- 
cedure. If the data are Poisson with very low counts, 
however, then the least-squares estimate becomes a 
poor approximation to the (logarithm of the) likeli- 
hood function (Antoniadis, Berruyer & Filhol, 1990). 

The quantity that is required, however, is not the 
likelihood function but the posterior probability: 
prob(/]{data}). The words 'maximum-likelihood esti- 
mate' can be misleading because they seem to suggest 
that Io is the most likely value of the intensity. This is 
not so: Io is the intensity that would make the 
observed data most probable; this is logically quite 
different from the most probable intensity, given the 
observed data. (An everyday example that highlights 
this important distinction is the difference between 
the probability of rain given that there are clouds 
overhead and the probability of clouds overhead 
given that it is raining. The two probabilities are 
clearly not the same!) Fortunately, these two distinct 
conceptual entities are related to each other through 
Bayes's theorem (Jeffreys, 1939; Jaynes, 1983): 

prob (ll{data}) oc prob ({data}l/) prob (I). (5) 

The posterior p.d.f, is thus related to the likelihood 
function through the prior probability prob (/). The 
prior p.d.f, represents what is known about the 
intensity before the data have been analysed. One 
clear piece of prior information is that the intensity is 
positive; this information can be encoded by the 
simple assignment: 

p r o b ( i ) = { 0 o n s t a n t  for I _ 0  
otherwise (6) 

A discussion about alternative, more optimal, prior 
p.d.f.'s is presented in § 5. This naive assignment is, 
however, almost always adequate; it is the form that 
is used throughout §§ 3 and 4. 

In order to estimate the amplitudes of the struc- 
ture factors, the posterior p.d.f, prob (A[{data}) is 
required. The following coordinate transformation 
must, therefore, be performed: 

prob (Al{data}) = prob (I {data})ld~l. (7) 

The Jacobian term on the right-hand side is given by 
the derivative of (2) as 2[A[. The posterior p.d.f, for 
the amplitudes can then be written as 

prob (Al{data}) oc IAI exp [ - ( A  2 - Io)2/2o'2], (8) 

where all the normalization factors that do not 
depend explicitly on A have been omitted. Note 
that the coordinate transformation automatically 
incorporates the simple prior of (6) because real 
values of the amplitude can only map to positive 
intensities. The p.d.f, of (8) is also symmetric, so that 
prob (A)= prob ( - A ) .  This is not unexpected since 
square roots are being used. By definition, the ampli- 
tude cannot be negative, so that only the positive 
solution need be considered. 

The strange-looking expression (8) can be approxi- 
mated by a more familiar form, in the usual way, by 
expanding its logarithm, L = In [prob (Al{data})], as 
a quadratic Taylor series about its maximum: 

A 2 d2L I 
L(A) "- L(Ao) + ½(A - o) d--A--SlAol + ' " '  (9) 

where 

This enables the formulation of a good approxi- 
mation for the posterior p.d.f, for the amplitude with 
a Gaussian of mean Ao and standard deviation ~rA: 

prob (Ai{data}) = exp (L) 

= [l/o-A(2rr) 1/2 ] 

x exp [ -  (A - Ao)2/2o'2], (10) 

where the relevant parameters are given by 

Ao = ½121o + (412 + 8cr2)1/2] 1/2 (11) 

and 
( d 'l 

= {(I/A 2) + [2(3A 2 - Io)1O-21]} -'/2 (12) 

It can easily be shown that these expressions for the 
parameters of the Gaussian p.d.f, of (10) reduce to 
those of the conventional analysis, given in § 2, in the 
limit Io >> crl. For those reflections where the inten- 
sity is poorly determined by the data, the best esti- 
mates of the corresponding amplitudes and their 
reliabilities can be very different. These results are 
illustrated graphically with a few examples. 

Consider first of all the case of a well determined 
reflection, I =  9 (1), as illustrated in Fig. l(a). It 
confirms that, in this instance, the conventional 
result for the amplitudes agrees almost perfectly with 
the Bayesian solution. For a reflection that is poorly 
determined by the data, I = 1 (9), Fig. l(b) shows an 
interesting divergence. The Bayesian solution of (8), 
which is plotted as a full line, indicates that the 
amplitude could easily be 0 but is very unlikely to be 
bigger than 6; the optimal estimate is about 2.6. In 
contrast, the conventional result, shown as a dashed 
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P o s t e r i o r  p.d.f, for the amplitude 
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Fig. 1. The posterior probabilities for amplitudes given the best-fit 
intensities (mean and estimated standard deviation): (a) I= 
9 (I); (b) I= 1 (9); (c) I= -20 (9). The full line is the Bayesian 
solution (with a naive positivity prior), the dotted line is the 
Gaussian approximation to the Bayesian solution and the 
dashed line is the 'conventional' solution (where it exists). 

line, gives an estimate of 1 for the amplitude and 
does not exclude values of up to about 12 as being 
unreasonable. It can also be seen that the Gaussian 
p.d.f, of (10), (11) and (12), plotted as a dotted line, 
is a good approximation to the Bayesian solution. 
Finally, the most striking case of all occurs when the 
estimate of the intensity is negative; for example: I = 
- 2 0  (9). Fig. l(c) shows that there is a perfectly 
respectable Bayesian solution, whereas the conven- 
tional analysis breaks down completely. 

4. Extension to overlapping peaks 

The Bayesian analysis presented above, for estimat- 
ing the amplitudes of individual (isolated) reflections, 
extends quite naturally to the case of overlapping 
Bragg peaks. This additional complication of overlap 
occurs frequently in powder diffraction. 

Again, the usual procedure is to start by estimat- 
ing the intensities of the reflections with a suitable 
fitting program (since these are linearly related to the 
data). Because of the overlap, however, the likeli- 
hood function of (4) has to be generalized to a 
multivariate Gaussian: 

r l ,  - q prob ({data}I{/}) ~ e.xp ~ 2 ( ,  Io~)(CT')u(Ij - , 
I_ i , j  

(13) 

where/ j  is the intensity of the jth reflection, with a 
best-fit value of Ioj, and C; -1 is the inverse of the 
covariance ma t r i x  for the intensities: 

(C~) o. = ( ( I i -  I0i)(/j- I0j)). (14) 

As before, Bayes's theorem states that this likeli- 
hood function must be multiplied by the prior p.d.f. 
prob ({I}) to obtain the posterior p.d.f, for intensi- 
ties: prob ({I}l{data}). Once again, the simple prior of 
(6) is used, so that it is zero if any of the intensities 
are negative. This is automatically incorporated in 
the coordinate transformation to the amplitudes: /j 
= A}. The Jacobian term in (7) is now given by the 
determinant of the diagonal matrix: 

Olj /OAi= 2Ai~o., (15) 

where 6~j is the Kronecker delta. Thus, the posterior 
p.d.f, for the amplitudes becomes 

prob ({A}[{data}) oc ( ~  Aj[) exp [ 1 2 - ~ E ( A ,  - Ioi) • . 

x ( C / I  2 ] )0(AJ - Ioj) . (16) 

This p.d.f, can also be approximated by a multi- 
variate Gaussian by expanding its logarithm, L = 
In [prob ({A}[{data})], as a quadratic Taylor series 
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about the maximum (at {Ao}): 

prob ({A}l{data})= Kexp [ -½ ~..(Ai-,,j Aoi) 

X(CAI)o.(Aj - moj)] , (17) 

where K is a normalization constant and CA 1 is the 
inverse of the covariance matrix for the amplitudes 
[like (14) but with A's instead of l's]: 

°2L I , where o~] =0.  (18) 
(CA ')0 -- OAiOAj {Ao} {Ao} 

In practice, it is better to find the optimal solution 
{Ao} by minimizing L, rather than by trying to solve 
the set of nonlinear simultaneous equations for its 
gradient to be zero. We believe that the posterior 
p.d.f, of (16) has a single maximum (in the positive 
hyper-octant of the amplitudes), which can be found 
quite efficiently by a simplex search (Nelder & Mead, 
1965) followed by a Newton-Raphson refinement 
(Press, Flannery, Teukolsky & Vetterling, 1986). This 
is illustrated graphically by the following examples. 

Fig. 2(a) shows the posterior p.d.f, for the intensi- 
ties of two overlapping reflections. The maximum 
likelihood estimate of the intensities assumed is I1 = 
9 (3), 12 = 4 (2), with a relative cross correlation of 
-80%.  The corresponding posterior p.d.f, for the 
two amplitudes is shown in Fig. 2(b); the Gaussian 
approximation to this, given by (17) and (18), is 
shown as a dotted line. A more striking example of 
this analysis can be seen in Fig. 3, where the data 
come from a neutron powder diffraction experiment 
conducted on High-Resolution Neutron Powder Dif- 
fractometer (HRPD) at the ISIS spallation neutron 
facility. The maximum-likelihood estimate for the 
intensities of the 7404 and the 321 reflections is 11 = 
- 5  (25), 12 = 14(11), with a relative cross corre- 
lation of -97%.  The corresponding posterior p.d.f.'s 
for the intensities and amplitudes are given in Figs. 
3(a) and (b), respectively. Although probability 
theory warns that there is a large amount of 
uncertainty with regard to the amplitudes of the 
reflections, it is still quite surprising to find that the 
optimal estimate is given by Ai = 3.1 and A 2  - 2.9. A 
cursory inspection of the best-fit intensities, for 
example, would tend to suggest that A2 should be 
greater than A I. This counterintuitive result is con- 
firmed by a Rietveld refinement of the crystal struc- 
ture, which gives the amplitudes as A~ = 3.1 and 
A2 = 2.6. 

5. Discussion 

In § 3, a very simple assignment was used for the 
prior p.d.f, for the intensity of a reflection. This 
section addresses the question of whether there is a 

better alternative to this naive choice. The prior 
p.d.f, is supposed to reflect all that is known about 
the intensity before analysis of the current data. 
Equation (6) certainly incorporates the prior knowl- 
edge that the intensity is positive but, unfortunately, 
it does a little more than just that. 

Suppose, for example, it had been decided to 
estimate the amplitude directly from the data. Then, 
a (nonlinear) fitting program would provide the like- 
lihood function prob ({data}lA). To translate this 
into the posterior p.d.f, for the amplitude, Bayes's 
theorem states that the prior p.d.f, prob (A) must 
now be assigned. Since (6) incorporates knowledge 
about positivity, the same prior could be used with 
the caveat that the I's are replaced with A's. Sadly, 
this would not lead to the same result as the analysis 
of § 3! The source of the inconsistency lies in the 
form of the prior, since (6) for I's does not represent 
the same information as (6) for A's. This can be seen 
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Fig. 2. (a) The Gaussian probability distribution function (p.d.f.) 
representing the best-fit intensities of two overlapping reflec- 
tions, 11 = 9 (3) and 12 = 4 (2) with a relative cross correlation of 
- 8 0 % .  (b) The corresponding p.d.f, for the amplitudes. The 
dotted contours are the multivariate Gaussian approximation to 
the posterior probability distribution function (solid contours) 
for the amplitudes. 
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by writing out the coordinate transformation of (7) 
explicitly for the priors: 

prob (A) = prob (/)141. (19) 

Jaynes (1983) pointed out that if a p.d.f, is required 
that expresses complete ignorance about such a scale 
parameter, other than positivity, then the same (form 
of) prior should be assigned irrespective of whether 
one is dealing with A, I or any other power of A. 
This requirement can only be satisfied if a Jeffreys 
prior is used: 

prob (x) oc 1/x, for x > 0, (20) 

which is equivalent to saying the prior p.d.f, should 
be uniform (a constant) for the logarithm of the 
intensity (or amplitude). Before the effect of using 
the Jeffreys prior on the results of the analysis in § 3 
is illustrated, the possibility of using informative 
priors is considered. 

o 

2 o _= ,- 

Gaussian p.d.f, for the I ~ t e ~ t i e s  

' ' ' ' I ' ' ' ° I ' ' ' ' I ' ' ' ' I ' 

O I , 

0 10 20 30 40 

Intensity 11 
(a) 

Corresponding p.d.f, for the Amplitttdes 

' I I ' I ' 

2 

0 

0 2 4 6 

Amplitude A 1 
(b) 

Fig. 3. (a) The Gaussian probability distribution function (p.d.f.) 
representing the best-fit intensities of two overlapping ~104 and 
321 reflections, 11 = -5 .1  (259) and 12 = 13.9 (113) with a rela- 
tive cross correlation of - 97%. (b) The corresponding p.d.f, for 
the amplitudes. The dotted contours are the multivariate 
Gaussian approximation to the posterior probability distribu- 
tion function (solid contours) for the amplitudes. 

The Jeffreys prior arises from claiming complete 
ignorance about the scale (of the size) of the param- 
eter involved. Suppose, however, that the average 
value of the intensity for a given reflection is known: 
(I) =/x. Then, the principle of maximum entropy 
(Jaynes, 1983) states that the following p.d.f, should 
be assigned: 

prob (/l/x) oc exp ( -  I//x), for I ___ 0. (21) 

This is, in fact, just the Wilson prior for an acentric 
reflection (Wilson, 1949; French & Wilson, 1978). If 
in addition it was known that the data were from a 
centrosymmetric crystal, then the Wilson prior 
appropriate for a centric reflection could be used: 

prob (/I/x, centric) ~ (I- 1/2) exp ( -  I/2/x,), for I_> 0. 

(22) 

Note that both the Wilson priors revert to the 
Jeffreys form if/x is not known; details are given in 
the Appendix. 

A few graphical examples are used to illustrate the 
effect of using these alternative priors. The solid line 
in Fig. 4(a) shows the posterior p.d.f, for the ampli- 
tude of a reflection that results from using the naive 
prior of (6) together with the likelihood information 
I =  9 (1); this is, of course, the same as Fig. l(a). 
Also plotted in Fig. 4(a) are the corresponding pos- 
terior p.d.f.'s for Jeffreys prior (dotted line) and the 
two Wilson priors given ( I )=  20 (acentric = dashed; 
centric = dots and dashes). It demonstrates that, for 
a well determined reflection, where I0 >> trz, the 
strength of the evidence of the data leads to the same 
conclusions irrespective of the prior state of knowl- 
edge. The conditions for Fig. 4(b) are the same as 
those of Fig. 4(a) except that (1)= 1 (instead of 20). 
The posterior p.d.f.'s for the Wilson priors have 
changed slightly but are still largely determined by 
the evidence of the current data. The case for reflec- 
tion that is poorly determined by the experimental 
measurements does, however, give different results. 

Fig. 4(c) shows the results for I = 1 (9), with ( I )=  
20 for the Wilson priors. Although the posterior 
probabilities for the naive and the Wilson priors are 
different in detail, they are all consistent to within 
the large uncertainties they represent. If, however, (I) 
is 1, as in Fig. 4(d), then the posterior p.d.f.'s for the 
Wilson priors become significantly narrower than 
that for the naive prior. Although the prior knowl- 
edge that (I) = 20 is more inconsistent with the likeli- 
hood information than ( I )=  1, the latter has a 
greater effect on the posterior probability. This 
shows that the prior information that a reflection is 
expected to be weak is far more powerful than 
knowledge that it is expected to be strong. This is 
easily confirmed by noticing that the Wilson prior of 
(21) goes asymptotically to the form of the naive 
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prior of (6) as the expectation value of the intensity 
becomes very large. 

For the case of Figs. 4(c) and (d), the Jeffreys 
prior leads to quite a different posterior p.d.f, for the 
amplitudes as compared with the naive or Wilson 
priors. There are two reasons why the use of a 
Jeffreys prior is not recommended. Firstly, it has a 
simple pole singularity at the origin that necessitates 
the imposition of a lower cut-off Imin for it to be 
handled properly. Although the lower cut-off has 
little effect for well measured reflections, the value of 
Imin affects significantly the 95% confidence interval 
for the amplitudes of poorly determined intensities. 
Secondly, any subsequent use of the inferred ampli- 
tudes and their estimated reliabilities to solve the 
structure of the crystal tends to involve a least- 
squares minimization. Since a least-squares analysis 
will implicitly assume that the posterior p.d.f, for the 

amplitudes is Gaussian, it will often be a bad 
approximation for the Jeffreys prior (or, indeed, for 
the Wilson centric prior). 

This last point actually leads us to recommend the 
naive prior of (6) as the best one from a practical 
viewpoint. If the intensity of the reflection is well 
determined by the data, then the form of the prior is 
largely irrelevant. If it is poorly determined, then the 
benefits of using the most appropriate prior can 
easily be wiped out by the crudity of the subsequent 
Gaussian approximation to a very non-Gaussian 
posterior probability. Even though the naive positi- 
vity prior may not be optimal, it is almost always 
adequate since the resultant posterior probability 
tends to be suffciently broad to encompass the other 
options. If a different prior is to be used, then the 
Wilson prior of (21) is a good one because it retains 
all the practical benefits of the simple prior of (6). 
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Fig. 4. The posterior probabilities for amplitudes given the best-fit intensities (mean and estimated standard devaiation): (a) and (b) I = 
9 (1), (c) and (d) I =  1 (9). The full line is the Bayesian solution (with a naive positivity prior), the dotted line is the corresponding 
posterior for the Jeffreys prior. The dashed and dash-dotted lines correspond to the Wilson acentric and centric priors, respectively. In 
(a) and (c), for the Wilson priors, <I> is taken to be 20; in (b) and (d), (1> = 1. 
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Finally, the discussion of practicality above has a 
bearing on the question: 'Is it better to refine crystal 
structures on intensities or amplitudes?' The real 
answer is that it should not matter at all if the 
analyses are carried out in a consistent fashion. In 
practice, however, the known positivity of the inten- 
sities is a difficult constraint to impose directly since 
one has to deal with p.d.f.'s that are truncated 
Gaussians. As has been seen, this awkward p.d.f, in 
intensity space maps on to a well behaved Gaussian- 
like p.d.f, in amplitude space. This suggests that, in 
cases of structure determination and the construction 
of Fourier maps, it should be better to use the 
inferred amplitudes since then the ubiquitous least- 
squares procedure automatically incorporates the 
positivity constraint. 

6. Worked example and concluding remarks 

In this section, the Bayesian analysis outlined above 
is applied to a high-resolution neutron powder dif- 
fraction data set of benzene collected on the HRPD 
at ISIS. The observed, calculated and difference data 
used in this example are shown in Fig. 5 and range 
from 0.91 to 1.11/~. Despite the narrow d-spacing 
range used here (the full data set lies between 0.70 
and 2.02 ]k), there are 140 crystallographically dis- 
tinct reflections. The data were initially refined using 
the Rietveld method to determine the correct scale 
factor for normalizing the structure factors. 
Integrated intensities were subsequently extracted 
using the Pawley method. Of the 140 reflections, 108 
were nonoverlapping; the remaining 32 were overlap- 
ped in 16 pairs. The largest separation between pairs 
of completely overlapped (i.e. unresolvable) reflec- 

tions was 0.00003 A (Ad/d= 3 x 10-5); the smallest 
separation between reflections that were deemed to 
be not completely overlapping was 0.00005 (Ad/d = 5 
x 10-5). This very small separation is an order 
magnitude less than the peak width; not surprisingly, 
this leads to extremely high correlations between the 
refined peak intensities. This is illustrated graphically 
in Fig. 6 which shows the magnitude of the percen- 
tage correlation matrix. The refined parameters are 
140 peak intensities, grouped into 124 clumps, and 
two parameters for a straight-line background; cell 
constants and peak-width parameters were fixed at 
previously refined values. The dominance of the 
diagonal and near-diagonal elements indicates that 
only neighbouring intensities are correlated with one 
another. From the top two rows and the final two 
columns, it is also noticeable that there is little 
correlation between the individual peak intensities 
and the two background parameters (the percentage 
correlations are around 15% in each case). This lack 
of correlation between sharp Bragg peaks and slowly 
varying backgrounds is a general feature of the 
refinement of powder diffraction data. 

Results from two selected ranges are presented in 
Table 1. It is clear that, when correlations are less 
than 80%, the standard least-squares analysis gives 
presentable results. However, for higher cross corre- 
lations, the standard Pawley method leads to prob- 
lems. Take, for example, the 455 and 027 reflections, 
which are - 1 0 0 %  correlated. In effect, the only 
good refined quantity is the sum of the two intensi- 
ties. This is evident from refined intensity values. The 
conventional approach gives an estimated value for 
the structure-factor amplitude, A, of 7.0 (11) for 455 
and an undetermined value for 027. Despite the high 
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Fig. 5. Observed (dots) and calcu- 
lated (full line) diffraction pat- 
tern of benzene obtained on the 
High Resolution Powder Dif- 
fractometer, HRPD, at ISIS. 
The refined data range fom 0.91 
to 1.11/~, and contain 140 
reflections that are marked by 
tick marks. The quality of fit is 
good (reduced X2 = 2.16 for 126 
parameters and 1004 observa- 
tions) as is evidenced by the 
difference/estimated standard 
deviation plot at the bottom of 
the figure. (The dotted lines 
denote a difference/estimated 
standard deviation of +-3.) 
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Table 1. Selected extracted structure-factor amplitudes from benzene 

Columns 1-3 contain the Miller indices; column 4 contains the d spacing in A. Columns 5 and 6 contain the intensities refined using a 
standard Pawley-type least-squares analysis, along with their estimated standard deviations. Columns 7-12 contain the percentage cross 
correlations between neighbouring intensities. For  example, 426 and 193 are - 5 1 %  correlated; 0,10,0 and 027 are + 64% correlated. 
Columns 13 and 14 contain the structure-factor amplitudes and errors obtained using the conventional analysis outlined in § 2. Columns 
15 and 16, on the other hand, contain the structure-factor amplitudes and errors obtained using the Bayesian approach outlined in this 
paper. The subsequent five columns contain the percentage cross correlations between neighbouring amplitudes. The final column is the 
true (signed) structure factor from the known crystal structure of  benzene. 

h k 1 d spacing 1o 
4 2 6 0.93482 - 0.26 
1 9 3 0.93567 0.40 
0 10 0 0.93676 63.54 
4 5 5 0.93727 48.27 
0 2 7 0.93733 - 56.86 
I 7 5 0.93892 42.62 
3 6 5 0.93898 47.06 
6 3 4 0.94268 71.07 
1 1 7 0.94386 24.69 
5 3 5 0.94386 24.69 

4 0 6 0.95402 57.37 
6 6 1 0.95410 -32.31 
7 3 2 0 . 9 5 4 2 3  81.48 
3 8 3 0.95498 7.28 
2 9 2 0.95948 39.34 
0 8 4 0.95954 20.04 
3 7 4 0.96151 2.59 
6 6 0 0.96394 82.33 

0.85 - 51 6 - 2 2 0 0 - - 0.61 0.36 - 21 0 0 0 0 - 0 .57 
0.92 - 30 10 - 9 1 - 1 0 0.63 0.73 0 .77 0 .38 0 0 0 0 0 - 0 .95 
7.16 - 68 64 - 7 6 0 0 8.08 0.44 8 .66 0 .33 - 37 20 0 0 0 - 8 .43 

15.39 - 100 16 - 14 0 0 0 6.95 1.11 3 .96 0 .56 - 87 0 0 0 0 4 .29 
29.09 - 17 15 0 0 0 0 - - 2 .36 1.59 0 0 0 0 0 0.09 
12.13 - 100 2 0 0 0 0 6.53 0.93 6 .45 0 .89 - 99 0 0 0 0 6.53 
12.01 - 2 0 0 0 0 0 6 .86 0.88 6.85 0 .84 0 0 0 0 0 - 6 .77 

1.12 - 36 2 0 0 0 0 8.43 0.07 8 .43 0.07 0 0 0 0 0 8.32 
0.55 - 100 - 23 1 0 0 0 4.97 0.06 4.97 2.49 - 100 0 0 0 0 6.99 
0.55 - 23 1 0 0 0 0 4 .97 0.06 4.97 2.48 0 0 0 0 0 1.66 

20.09 - 96 77 - 9 0 0 0 7.57 1.33 4 .30 0.89 - 60 - 19 24 0 0 - 2.42 
16.95 - 9 1  21 0 0 0 0 - - 1.79 1.20 - 4 9  7 0 0 0 0.73 
8.22 - 42 0 0 0 0 0 9.03 0.46 8 .09 0.25 - 50 0 0 0 0 - 8 .65 
1.22 - 1 i 0 0 0 0 2.70 0.23 2.82 0.21 0 0 0 0 0 - 2 .23 
8 .16 - 99 9 0 0 0 0 6.27 0.65 6.13 0 .60 - 98 0 0 0 0 6.27 

16.11 - 10 0 0 0 0 0 4.48 1.80 4.88 1.48 0 0 0 0 0 4.35 
0.69 - 8 1 - I 0 0 0 i .61 0.21 1.64 0.21 0 0 0 0 0 1.61 
1.76 - 34 8 - 1 0 0 0 9.07 0.10 9.08 0.10 0 0 0 0 0 9.04 

correlation and negative refined intensity, the 
Bayesian analysis gives a meaningful result. The final 
values, however, must be treated with caution. 
Firstly, there is still a high correlation ( - 8 7 % )  
between the two amplitude values. The positivity 
constraint imposed by the Bayesian analysis gen- 
erally reduces cross correlation but by no means 
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Fig. 6. A two-dimensional grey-scale representation of  the magni- 
tude of  the percentage correlation matrix for the 126 refined 
parameters; 124 of  these are associated with the 140 Bragg 
intensities and the remaining two are the background param- 
eters (indicated by the two top rows and rightmost columns). 

eliminates it. Secondly, the refined amplitude for 027 
is substantially higher than the true value. This will 
always be the case when peaks are severely over- 
lapped and the resulting errors are large. In general, 
strong peaks may be accurately determined; weak 
peaks are often overestimated although the asso- 
ciated error is usually sufficient to cover the discrep- 
ancy. Where peak overlap is complete (e.g. 117 and 
535), no advantages are offered by the Bayesian 
analysis. 

The results of the top and bottom parts of Table 1 
are shown graphically in Figs. 7 and 8, respectively. 
In both diagrams, (a) represents the outcome of the 
least-squares analysis; both show occurrences of 
negative intensities in highly overlapped regions. The 
results of the subsequent Bayesian analysis are in 
close agreement with the calculated intensities given 
by the refinement of the crystal structure; this is 
illustrated in parts (b) and (c) of Figs. 7 and 8. 

The Bayesian presentation in this paper is consist- 
ent with that given earlier by French & Wilson 
(1978). The main difference is that they only con- 
sidered the case of isolated reflections, whereas in 
this paper the analysis is generalized to include situa- 
tions of peak overlap common in powder diffraction. 
This extension is made easier by an altemative choice 
for approximating the posterior p.d.f: in this paper, 
it is described as a Gaussian, the parameters of 
which are given by the maximum of the posterior 
and its curvature at that point; French & Wilson also 
approximate to a Gaussian distribution but estimate 
its mean and variance from the first and second 
moments of the posterior. If the posterior p.d.f, were 
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really a Gaussian, the two procedures would give 
identical results; in practice, they give very similar 
results. The advantage of the current procedure is 
that it leads to a more efficient algorithm, which 

generalizes easily to the case of correlated intensities. 
For example, the answer can be calculated 
analytically for isolated reflections; by contrast, 
French & Wilson have to calculate the moments 
numerically by interpolating from a stored table. 
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Fig. 7. The observed and calculated powder diffraction pattern of 
benzene between 0.934 and 0.948 A. (a) The results of least- 
squares fitting using the Pawley method.  (b) The square of 
individual inferred structure-factor amplitudes from the subse- 
quent Bayesian analysis. (c) The calculated intensities given by 
the refinement of the crystal structure. [The apparent  dis- 
agreement at 0.944 A is because in (a) and (b) there are two 
completely overlapping reflections whose intensities are pre- 
sumed to be equal.] 
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Fig. 8. The observed and calculated powder diffraction pattern of  

benzene between 0.953 and 0.967 A. (a) The results of least- 
squares fitting using the Pawley method.  (b) The square of  
individual inferred structure-factor amplitudes from the subse- 
quent Bayesian analysis. (c) The calculated intensities given by 
the refinement of the crystal structure. 
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APPENDIX 
Maximum-entropy derivation of the Wilson distribu- 

tions and their relationship to the Jeffreys prior 

In the discussion in § 5, it was mentioned that com- 
plete ignorance about a scale parameter X is 
expressed through the assignment of a Jeffreys (1939) 
prior: 

prob(X)~ 1/X, for X > 0 .  (AI) 

This peculiar form looks less strange once it is 
realized that it is equivalent to a p.d.f, that is 
uniform with respect to log (X). Technically, a suita- 
ble range between X m i  n and Xmax should be defined 
so that (A 1) can be normalized; in practice, however, 
it often does not need to be specified explicitly as the 
posterior p.d.f, is usually well behaved even when the 
limits of 0 and oo are considered. If the results 
depend strongly on the range then, in that case, 
probability theory is warning that the prior knowl- 
edge is at least as important as the data! A Jeffreys 
prior would therefore be assigned for the magnitude 
of a structure factor if there is complete ignorance 
about its scale; in this case, it doesn't matter whether 
the amplitude A or the intensity I is used, since it is 
the requirement for such consistency that leads to 
(A1). This still leaves the question of which p.d.f. 
should be used if there is some cogent information. 

Jaynes (1983) has suggested that the principle of 
maximum entropy (MaxEnt) should be used to 
assign p.d.f.'s when one is given some testable 
information. That is to say, prob (X) should be 
chosen by maximizing its entropy S: 

S = - [ p r o b  (X) In [prob (X)/m(X)]dX, (A2) 

where m(X) is a suitable measure over the space of 
possibilities for X, subject to normalization and any 
other testable constraints available. In the context of 
Wilson distributions, let it be assumed that the aver- 
age value of /z of the intensity of a reflection is 
known; in terms of prob (I), this is given by 

o o  

(I) = f lprob (l)dl =/~, (A3) 
o 

or, in terms of prob (A), can be written as 

(A 2) = .~ A2prob (A)dA =/1,. (A4) 
o 

For the measure, let a simple uniform assignment be 
made with respect to the real and imaginary parts of 
the structure factor; this means that m(X,Y) is a 
constant in the Argand plane, where the complex 
structure factor Z is given by Z = X + iY. Since the 
probability that the amplitude of a general reflection 
will lie between A and A + ~A is proportional to the 
area, 27rA6A, of a thin ring of radius A, this gives a 
measure m(A) that is proportional to A. If the reflec- 

tion is also known to be centric, then the correspond- 
ing probability is proportional to the element of area 
26A; consequently, m(A) is a constant. With a 
change of variable from A to I (where I =  A2), a 
uniform measure can be assigned in both cases: 

m(A) } ~ for a centric reflection 
m(I) = constant [otherwise 

(AS) 
By the method of Lagrange multipliers, the entropy 
in (A2) can be maximized, with a constant measure, 
subject to the constraint of (A3) or (A4) as appro- 
priate; this yields the following MaxEnt assignments 
for the p.d.f.'s: 

prob( l l tz)=(1/ /z)exp(- / / /z ) ,  for I > 0  (A6) 

and 

prob (Altz, centric) 

= (2/Trtz) 1/2 exp ( -  A2/21z), for A > 0. (A7) 

Equation (A6) is, of course, just the Wilson distribu- 
tion for an acentric reflection; (A7) is its centric 
counterpart and can be recognized as such when it is 
transformed into a p.d.f, for the intensity: 

prob (I[/x, centric) 

= (27r/zI)-1/2 exp ( -  1/21.~), for I > 0. (AS) 

Now, suppose the magnitude of the average inten- 
sity was not known (because the data were not on an 
absolute scale, for example). Then rather than the 
conditional p.d.f.'s of (A6) and (A8), the marginal 
distributions prob (I) and prob (llcentric) would be 
required. For the case of the general reflection, this 
means that the following integral must be evaluated: 

prob (I) = .~ prob (L/z)dtz 
0 

= .~ prob (ll/x)prob (#)d/x, (A9) 
o 

where the product rule of probability theory has 
been used to express the joint p.d.f, prob (/,/x) in 
terms of the assignment of (A6) and a prior for #.  
Since the average value of the intensity is a scale 
parameter, the Jeffreys prior of (A 1) should be used 
to represent complete a priori ignorance about its 
size: prob (/x)oc 1//x. Carrying out the integration 
yields 

prob (I) oc 1/I, for I > 0. (A 10) 

For the centric case, it is easiest to do the marginal 
integral in amplitude space: 

prob (Alcentric) 
o o  

= f prob (A,/x centric)dlz 
o 
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= J prob (A #,centric) prob (/x centric)d/z. (A 11) 
o 

With the MaxEnt assignment of (A7) and a Jeffreys 
prior for prob (/zlcentric), because the knowledge 
that a reflection is centric says nothing about its 
expected value, the integral of (A11) yields 

prob (Alcentric) ~ 1/A, for A > 0. (A 12) 

Equation (A12) is, of course, equivalent to (A10) 
with a change of variables. 

In conclusion, it can be seen that the Wilson 
distributions can easily be derived with the 
maximum-entropy principle. The acentric case arises 
from the imposition of a constraint on the expected 
value of the intensity of a general reflection, whereas 
the centric p.d.f, requires the additional knowledge 
that the structure factor must be real. If there is 
complete uncertainty as to the absolute scale of the 
data then, as expected, both the Wilson distributions 
revert to the form of the Jeffreys prior. 
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Abstract 

An atom is defined as a region of space bound by a 
surface of local zero flux in the gradient vector field 
of the electron density. The same boundary condi- 
tion defines a proper open system, one whose 
observables and their equations of motion are 
defined by quantum mechanics. Applied to a crystal, 
this boundary condition coincides with the original 
definition of the atomic cell in metallic sodium given 
by Wigner & Seitz. It is proposed that it be used to 
generalize the concept of a Wigner-Seitz cell, defin- 
ing it as the smallest connected region of space 
bounded by a 'zero-flux surface' and exhibiting the 
translational invariance of the crystal. This defi- 
nition, as well as removing the arbitrary nature of 
the original method of construction of the cell in the 
general case, maximizes the relation of the cell and 
the derived atomic form factors to the physical form 
exhibited by the charge distribution of its constituent 
atoms. The topology of the electron density, as 
summarized in terms of its critical points, also 
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defines the atomic connectivity and structure within 
a cell. Attention is drawn to the correspondence of 
the symmetries of the structural elements determined 
by the critical points with the site symmetries tabu- 
lated in International Tables for Crystallography. The 
atomic scattering factor is defined for an atom in a 
crystal and determined in ab initio calculations for 
diamond and silicon. The transferable nature of 
atomic charge distributions is demonstrated. It 
enables one to estimate a structure factor and its 
phase in a crystal using the density of an atom or 
functional group obtained in a molecular calculation. 
Atoms in a crystal, along with defects and vacancies, 
are identifiable with bounded regions of real space. 
Their properties are additive and are defined by 
quantum mechanics. 

I. Introduction 

The amplitudes of X-rays scattered by a crystal are 
determined by the electronic charge distribution. 
Two essential concepts are involved in the interpreta- 
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